9,054 research outputs found

    An elusive radio halo in the merging cluster Abell 781?

    Full text link
    Deep radio observations of the galaxy cluster Abell 781 have been carried out using the Giant Metrewave Radio Telescope at 325 MHz and have been compared to previous 610 MHz observations and to archival VLA 1.4 GHz data. The radio emission from the cluster is dominated by a diffuse source located at the outskirts of the X-ray emission, which we tentatively classify as a radio relic. We detected residual diffuse emission at the cluster centre at the level of S(325 MHz)~15-20 mJy. Our analysis disagrees with Govoni et al. (2011), and on the basis of simple spectral considerations we do not support their claim of a radio halo with flux density of 20-30 mJy at 1.4 GHz. Abell 781, a massive and merging cluster, is an intriguing case. Assuming that the residual emission is indicative of the presence of a radio halo barely detectable at our sensitivity level, it could be a very steep spectrum source.Comment: 5 pages, 4 figures, 1 table - Accepted for publication on Monthly Notices of the Royal Astronomical Society Letter

    High sensitivity low frequency radio observations of cD galaxies

    Get PDF
    We present the GMRT 235 MHz images of three radio galaxies and 610 MHz images of two sources belonging to a complete sample of cD galaxies in rich and poor galaxy clusters. The analysis of the spectral properties confirms the presence of aged radio emission in two of the presented sources.Comment: 3 pages, 2 figures, To appear in the Proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching (Germany

    The cluster relic source in A521

    Full text link
    We present high sensitivity radio observations of the merging cluster A521, at a mean redsfhit z=0.247. The observations were carried out with the GMRT at 610 MHz and cover a region of ∌\sim1 square degree, with a sensitivity limit of 1σ1\sigma = 35 ÎŒ\muJy b−1^{-1}. The most relevant result of these observations is the presence of a radio relic at the cluster periphery, at the edge of a region where group infalling into the main cluster is taking place. Thanks to the wealth of information available in the literature in the optical and X-ray bands, a multi--band study of the relic and its surroundings was performed. Our analysis is suggestive of a connection between this source and the complex ongoing merger in the A521 region. The relic might be ``revived' fossil radio plasma through adiabatic compression of the magnetic field or shock re--acceleration due to the merger events. We also briefly discussed the possibility that this source is the result of induced ram pressure stripping of radio lobes associated with the nearby cluster radio galaxy J0454--1016a. Allowing for the large uncertainties due to the small statistics, the number of radio emitting early--type galaxies found in A521 is consistent with the expectations from the standard radio luminosity function for local (z≀\le0.09) cluster ellipticals.Comment: 30 pages 8 figures, 5 tables, accepted by New Astronom

    Creation of a molecular condensate by dynamically melting a Mott-insulator

    Full text link
    We propose creation of a molecular Bose-Einstein condensate (BEC) by loading an atomic BEC into an optical lattice and driving it into a Mott insulator (MI) with exactly two atoms per site. Molecules in a MI state are then created under well defined conditions by photoassociation with essentially unit efficiency. Finally, the MI is melted and a superfluid state of the molecules is created. We study the dynamics of this process and photoassociation of tightly trapped atoms.Comment: minor revisions, 5 pages, 3 figures, REVTEX4, accepted by PRL for publicatio
    • 

    corecore